Key Mechanistic Features of Enantioselective C-H Bond Activation Reactions Catalyzed by [(Chiral Mono-N-Protected Amino Acid)Pd(II)] Complexes

Djamaladdin G. Musaev, ${ }^{*, \dagger}$ Alexey Kaledin, ${ }^{\dagger}$ Bing-Feng Shi, ${ }^{\ddagger}$ and Jin-Quan Yu* ${ }^{*} \ddagger$
${ }^{\dagger}$ Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
${ }^{\dagger}$ Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

S Supporting Information

Abstract

Monoprotected chiral amino acids have recently been established as a class of ligand scaffolds for effecting Pdcatalyzed enantioselective $\mathrm{C}-\mathrm{H}$ bond activation reactions. However, to elucidate the mechanistic details and controlling factors of these reactions, more comprehensive studies are needed. In this work we report computational investigations into the key mechanistic features of enantioselective $\mathrm{C}-\mathrm{H}$ bond activation reactions catalyzed by a [chiral (mono- N -protected amino acid) $-\mathrm{Pd}(\mathrm{II})]$ complex. Structural analysis points to a $\mathrm{C}-\mathrm{H}$ insertion intermediate in which the nitrogen atom of the ligand is bound as a neutral σ-donor. The formation of this $\mathrm{C}-\mathrm{H}$ insertion intermediate could, in principle, proceed via a "direct $\mathrm{C}-\mathrm{H}$ cleavage" or via "initial $\mathrm{N}-\mathrm{H}$ bond cleavage followed by $\mathrm{C}-\mathrm{H}$ cleavage". The computational studies presented herein show that the pathway initiated by $\mathrm{N}-\mathrm{H}$ bond cleavage is more kinetically favorable. It is shown that the first step of the reaction is the $\mathrm{N}-\mathrm{H}$ bond cleavage by the coordinated acetate group (OAc). In the next stage, the weakly coordinated OAc^{-}(the second acetate group) activates the ortho $-\mathrm{C}-\mathrm{H}$ bond of the substrate and transfers the H -atom from the C -atom to the bound N -atom of the ligand. As a result, a new $\mathrm{Pd}-\mathrm{C}$ bond is formed and the carbamate is converted from X-type to L-type ligand. The absolute configuration of the products that are predicted on the basis of the calculated energies of the transition states matches the experimental data. The calculated enantioselectivity is also comparable with the experimental result. On the basis of these data, the origin of the enantioselectivity can be largely attributed to steric repulsions in the transition states.

1. INTRODUCTION

Pd-catalyzed $\mathrm{C}-\mathrm{H}$ bond activation reactions have been actively studied in the past decade, owing to their emerging potential for providing a diverse collection of new catalytic transformations. ${ }^{1}$ However, in terms of reactivity, substrate scope, catalytic efficiency, chemoselectivity, and stereoselectivity, these reactions fall short of the high standard set by the most broadly used synthetic transformations, such as cross-coupling, asymmetric hydrogenation, asymmetric epoxidation, and dihydroxylation reactions. Without exception, all of these venerable transition metal-catalyzed reactions critically depend on the nature (its steric and electron properties, as well as coordination mode to the metal) of a ligand that is bound to the metal and is involved in the transition state of the key step of the catalytic cycle. ${ }^{2,3}$ Thus, in the field of metal-catalyzed $\mathrm{C}-\mathrm{H}$ functionalization, we envision that the single most important challenge is to identify a ligand that will influence the transition state energy of the $\mathrm{C}-\mathrm{H}$ bond cleavage step. To pursue this goal, we first decided to use desymmetrization reactions of prochiral $\mathrm{C}-\mathrm{H}$ bonds as a platform to discover chiral ligands and apply the resulting enantioselectivity values as evidence for the involvement of a ligand in the transition state of the $\mathrm{C}-\mathrm{H}$ cleavage step. ${ }^{4}$ We have recently discovered that
monoprotected amino acid ligands (MPAA) can promote $\mathrm{Pd}(\mathrm{II})$ catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ activation reactions with both pyridine and carboxylic acid directing groups (see Chart 1). ${ }^{5,6}$

Chart 1

The absolute configuration of the products is consistent with a major $\mathrm{C}-\mathrm{H}$ insertion intermediate that has been observed and characterized with the pyridine-containing substrate. On the basis of the absolute configuration of the product formed from

[^0]Published: December 8, 2011
a carboxylic acid-containing substrate, we also proposed a similar $\mathrm{C}-\mathrm{H}$ insertion intermediate in that closely related reaction. However, no information has been obtained on the mechanisms and important elementary steps of the reaction, the nature of the reactive species, and the transition state energies of the $\mathrm{C}-\mathrm{H}$ cleavage step. We therefore decided to perform computational studies in order to gain insights into the mechanisms and important elementary steps of the reaction, the nature of the active species, the ligand coordination mode to the $\mathrm{Pd}(\mathrm{II})$, and the transition state structure of the $\mathrm{C}-\mathrm{H}$ activation step. The obtained knowledge will be used to determine the origin of the observed enantioselectivity. Further understanding and development of the MPAA ligands could improve the enantioselectivity as well as regioselectivity ${ }^{6}$ and reaction rate. ${ }^{7,8}$

2. COMPUTATIONAL DETAILS

Methods. All calculations were performed using the Gaussian 09 program. ${ }^{9}$ The geometries of all reported structures were optimized without any symmetry constraint at the B3LYP level of theory in conjunction with the Lanl2dz basis set and the corresponding HayWadt effective core potential (ECP) for Pd and standard 6-31G(d,p) basis sets for all remaining atoms. ${ }^{10,11}$ This approach is subsequently referred to as $\mathrm{B} 3 \mathrm{LYP} /[\mathrm{Lanl2dz}+6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})]$.

Hessians for all structures, calculated at the B3LYP/[Lanl2dz+6$31 G(d, p)$] level of theory, confirmed that all reported transition states have one imaginary frequency corresponding to the reaction coordinates, and all minima have no imaginary frequency. Below, we discuss gas-phase energetics presented as $\Delta H_{\text {gas }} / \Delta G_{\text {gas }}$ using the standard harmonic approximation and the vibrational frequencies obtained by diagonalizing the mass-weighted Hessian. The Cartesian coordinates and energies of all optimized structures at the B3LYP/ [Lanl2dz+6-31G(d,p)] level of theory are given in the Supporting Information.

The dielectric effects from the surrounding environment were estimated using the self-consistent reaction field IEF-PCM method ${ }^{12}$ at the B3LYP/[Lanl2dz+6-31G(d,p)] level of theory. These corrections were made only for the most important structures. As in the experiments, ${ }^{5,6}$ the THF was used as a solvent. Corrections to the gas phase free energies $\left(\Delta G_{\text {gas }}\right)$ due to solvent effects $\left(\Delta G_{s}\right)$ were estimated for the selected structures as single point IEF-PCM calculations done at the gas-phase optimized geometries: $\Delta G_{\mathrm{gas}}+$ $\Delta G_{\text {solv }}$. One should note that about $88-90 \%$ of PCM-contribution to energy is due to electrostatic interactions between the solute and solvent. Other components of this energy are cavitation, dispersion, and repulsion energies.

Model. In the presented calculations, the RCOO^{-}molecule was modeled by HCOO^{-}. As a substrate we chose the 2-benzhydrylpyridine. Since benzoquinone (BQ) was previously shown to only improve the yield through promoting reductive elimination after the $\mathrm{C}-\mathrm{H}$ activation step and has no effect on enantioselectivity, ${ }^{5}$ we focused on the (amino acid) $-\mathrm{Pd}(\mathrm{II})$-Sub complex using two different models as shown in Scheme 1. Model-1 is a full structure of the

Scheme 1

experimentally utilized ${ }^{5,6}$ complex. In Model-2 we replaced $i-\operatorname{Pr}$ by Me and ${ }^{t} B u$ by H. Below, we mainly discuss the results obtained for

Model-1. Model-2 results will be discussed only in specific cases and will be explicitly stated.

3. RESULTS AND DISCUSSION

Reactants and Final Products. As could be expected, the reactant of the studied reaction is the $\mathrm{L}-\mathrm{Pd}(\mathrm{II})-\mathrm{Sub}(\mathrm{HCOO}), \mathrm{I}$, complex, which has numerous isomers. Six of them are given in Figure 1. As seen from this figure, in structure I_a the

Figure 1. The calculated isomers of the reactant I. Isomers I_a and $\mathbf{I}_{_} \mathbf{b}$, as well as $\mathbf{I}_{\mathbf{-}} \mathbf{c}$ and $\mathbf{I}_{-} \mathbf{d}$, and $\mathbf{I}_{-} \mathbf{e}$ and $\mathbf{I}_{\mathbf{-}} \mathbf{f}$ differ from each other, respectively, by the location of the $\overline{\mathrm{H}}^{3}$ and Ph ligands of the C^{1}-center. Ligands or numbers given without parentheses are for $\mathbf{I} _\mathbf{a}, \mathbf{I} _\mathbf{c}$, and $\mathbf{I} \mathbf{e}$, while those given in parentheses are for $\mathbf{I}_{\mathbf{l}} \mathbf{b}, \mathbf{I} \mathbf{-} \mathbf{d}$, and $\mathbf{I}_{-} \mathbf{f}$. Distances are given in angstroms.
$\left(\mathrm{HCO}^{1} \mathrm{O}^{2}\right)^{-}$ligand is coordinated to the Pd -center (by its O^{1} atom) and the H^{1}-atom of the amino group (by its O^{2} atom). The O^{1} is also H -bonded to the H^{3} atom of the C^{1}-center. This coordination mode of $\left(\mathrm{HCO}^{1} \mathrm{O}^{2}\right)^{-}$has facilitated the formation of a weak $\mathrm{Pd}-\mathrm{N}^{1}$ donor-acceptor bond with a $2.107 \AA$ bond distance. Isomer I_b has a similar (in the I_b positions, H^{3} and Ph ligands are switched compared to those in I_a) bonding pattern between the $\left(\mathrm{HCO}^{1} \mathrm{O}^{2}\right)^{-}$, the Pd-center, and amino acid ligand L. However, in I_b, the O^{1}-center is H -bonded to the phenyl group on the C^{1}-center. Isomer $\mathbf{I}_{-} \mathbf{b}$ is found to be $9.61 / 9.67 / / 9.31 \mathrm{kcal} / \mathrm{mol}$ higher in energy than I I a (see Table 1; here and below, the numbers given after // include solvent effects). The rotational (around the $\mathrm{Pd}-\mathrm{N}^{2}$ bond) barrier connecting $\mathbf{I} _\mathbf{a}$ and $\mathbf{I} \mathbf{b}$ b isomers is expected to be insignificant and was not located. Our ${ }^{1} \mathrm{H}$ NMR studies of the mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}$, substrate, and amino acid ligand are consistent with this structure (see Supporting Information).

The other four isomers of I, i.e. I_c-f, lack the $\mathrm{N}^{1} \mathrm{H}^{1}$--$\mathrm{O}^{2} \mathrm{C}(\mathrm{H}) \mathrm{O}^{1}$ bonding pattern. In these isomers the amino acid L ligand is coordinated to the Pd -center only via its O^{3}-atom. In isomers I_c and I_d, the second O -atom of the carboxylate group, O^{4}, is located cis to O^{2}, while, in isomers I e and $\mathrm{I} _\mathbf{f}$, the O^{4} and O^{2} atoms are trans to each other. In $\mathrm{I}_{-} \bar{c}-\mathrm{f}$, the $\overline{\mathrm{Pd}}-\mathrm{N}^{1}$ and $\mathrm{HCO}^{1} \mathrm{O}^{2}--\mathrm{H}^{1} \mathrm{~N}^{1}$ bonds do not exist; instead they have the $\mathrm{Pd}-\mathrm{C}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ bonds, with bond distances of 2.378 (2.384) and 2.440 (2.436) \AA for I_c (I_d) and 2.374 (2.408) \AA and 2.411 (2.383) Å for I_e (I_f). These isomers are $\sim 11-$ $12 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the N -agostic isomer $\mathrm{I} _$a.

The experimentally observed product ${ }^{5,6}$ of the aryl $\overline{\mathrm{C}}-\mathrm{H}$ bond activation reaction is the complex P1 having the $\mathrm{Pd}-\mathrm{N}^{1}$, $\mathrm{Pd}-\mathrm{O}^{3}, \mathrm{Pd}-\mathrm{C}^{3}$, and $\mathrm{Pd}-\mathrm{N}^{2}$ bonds. Computations have revealed four different isomers of product P1 (see Figure 2). Isomers P1_(R)_cis and P1_(R)_trans are the (R) stereoisomers with the $\bar{i}-\operatorname{Pr}$ ligand and the C^{1} center located cis (at the same side of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane) and trans (at the opposite sides of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane) to each other, respectively. These isomers are separated by small energy barriers associated with either the inversion via the C^{1}-center or the ring-flip processes. Similarly, isomers P1_(S)_cis and P1_(S)_trans are

Table 1. Relative Energies (in kcal/mol) of the Reported Structures on the "Direct C-H Bond Activation" Pathway of the Studied Reaction Calculated at the B3LYP/\{Lanl2dz+ 6-31G(d,p)\} Level of Theory in Gas-Phase and THF Solvent (at the PCM Level)

structure	$\Delta H_{\text {gas }}$	$\Delta G_{\text {gas }}$	$\Delta G_{\text {s }}$
I_a	0.00	0.00	0.00
I_b	9.61	9.67	9.31
I_c	12.27	11.00	
I_d	11.16	11.05	
I_e	11.97	11.22	
I_f	11.68	11.17	
TS1_c_(R)	21.41	22.80	
TS1_e_(R)	20.99	22.78	
TS1_d_(S)	18.59	19.74	
TS1_f_(S)	19.24	20.34	
Int1_c_(R)	-8.45	-7.78	
Int1_e_(R)	-3.06	-3.58	
Int1_d_(S)	-10.31	-8.98	
Int1_f_(S)	-4.56	-2.69	
P1			
(R)_cis	[2.68]	[2.68]	[2.51]
(R)_trans	[1.71]	[1.37]	[1.32]
(S)	[0.00]	[0.00]	[0.00]
(S)_trans	[3.61]	[3.15]	[2.97]
P2			
(R)	\{2.43\}	\{0.71\}	\{0.51\}
(S)	\{0.00\}	\{0.00\}	\{0.00\}
$\mathrm{P} 1+\mathrm{HCOOH}$			
(R)_trans	16.40	5.88	1.72
(S) cis	14.69	4.52	0.00
$\mathbf{P} 2+(\mathbf{L}-\mathbf{H})$			
(R)	12.89	0.11	-8.78
(S)	10.46	-0.60	-9.29

Figure 2. Calculated possible products of the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ bond activation reaction. In the notation Pn_(X)_z, Pn stands for products $\mathbf{P} 1$ and $\mathbf{P 2}, \boldsymbol{X}$ stands for stereoisomer (R or S), and \mathbf{z} stands for the positioning of the $i-\operatorname{Pr}$ and C^{1} chiral center $(\mathbf{z}=\mathbf{c i s}$, if the $i-\mathrm{Pr}$ ligand and the C^{1} center are located on the same side of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane; $\mathbf{z}=$ trans, if the $i-\operatorname{Pr}$ ligand and the C^{1} center are located on the opposite sides of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane). Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms.
the (S) stereoisomers. In these isomers the $\mathrm{Pd}-\mathrm{N}^{1}, \mathrm{Pd}-\mathrm{O}^{3}$, $\mathrm{Pd}-\mathrm{C}^{3}$, and $\mathrm{Pd}-\mathrm{N}^{2}$ bond distances are calculated to be within $2.155-2.173 \AA, 2.118-2.124 \AA, 2.006-2.018 \AA$, and $2.057-2.069 \AA$,
respectively. The energetically most stable isomer of $\mathbf{P 1}$ is the (S) stereoisomer P1_(S)_cis. Another (S) stereoisomer, P1_(S)_trans, is $3.61 / 3.15 / / 2.97 \mathrm{kcal} / \mathrm{mol}$ higher in energy. The (\bar{R}) stereoisomers P1_(R)_trans and P1_(R)_cis are calculated to be $1.71 / 1.37 / / \overline{1.32}$ and $2.68 / 2.68 / / \overline{2} .51 \overline{\mathrm{kcal}} / \mathrm{mol}$ higher in energy than P1_(S)_cis.

In the course of these computational studies, we also located another possible product of the reaction, complex $\mathbf{P 2}$, where Pd is ligated by a HCOO^{-}ligand (instead of amino acid) and substrate (see Figure 2). Once again, the (S) stereoisomer of P2_($\boldsymbol{S})$ is found to be lower in energy than (R) isomer $\mathbf{P 2}$ _(\boldsymbol{R}) by $2.43 / 0.71 / / 0.51 \mathrm{kcal} / \mathrm{mol}$. In $\mathbf{P} 2$ the calculated $\mathrm{Pd}-\mathrm{C}^{3} \overline{\text { bond }}$ distance is slightly shorter than that in P1, mainly because the $\mathrm{Pd}-\mathrm{O}^{2}$ bond located trans to $\mathrm{Pd}-\mathrm{C}^{3}$ is extremely weak with a bond distance of $2.314(2.306) \AA$.

The formation of the $\mathbf{P} 1$ products, i.e. reactions

$$
\begin{align*}
& \mathbf{I}_{-} \mathbf{a} \rightarrow \mathbf{P} 1_{-}(\boldsymbol{R}) _ \text {trans }+\mathrm{HOOCH} \tag{1}\\
& \mathbf{I} \mathbf{a} \rightarrow \mathbf{P} 1_{-}(\mathbf{S})_{_} \mathbf{c i s}+\mathrm{HOOCH} \tag{1'}
\end{align*}
$$

are calculated to be endothermic by $16.40 / 5.88 / / 1.72$ and $14.69 / 4.52 / / 0.50 \mathrm{kcal} / \mathrm{mol}$. Meanwhile, the energies of the reactions

$$
\begin{align*}
& \mathbf{I} _\mathbf{a} \rightarrow \mathbf{P} 2_{-}(\boldsymbol{R})+\mathbf{L}-\mathbf{H} \tag{2}\\
& \mathbf{I} \mathbf{a} \rightarrow \mathbf{P} 2_{-}(\mathbf{S})+\mathbf{L}-\mathbf{H} \tag{2'}
\end{align*}
$$

are $12.89 / 0.11 / /-8.78$ and $10.46 /-0.60 / /-9.29 \mathrm{kcal} / \mathrm{mol}$, respectively. In other words, the formation of experimentally reported ${ }^{5,6}$ product P1 (Pd complex with amino acid and substrate) is thermodynamically less favorable than that of $\mathbf{P} 2$ (Pd complex with HCOO^{-}and substrate) product. As seen above, the inclusion of solvent effects make reactions 1 and 1^{\prime} only slightly endothermic, and reactions 2 and 2 ' exothermic by 8.78 and $9.29 \mathrm{kcal} / \mathrm{mol}$.

These computational findings raise two major questions: (1) Why do experiments lead to the thermodynamically less favorable (R) stereoisomer P1_(R) cis rather than the energetically more favorable (S) stereoisomer P1_(S)_cis? (2) Why do experiments observe thermodynamically less favorable product P1 (both (R) and (S)) rather than P2_(S)_cis product?

To answer these questions, we study all possible mechanisms of the $\mathrm{C}-\mathrm{H}$ bond activation in complex I in detail. In general, reactions 1 or 1^{\prime} and 2 or 2^{\prime} could proceed via two different pathways: (a) Direct $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond activation and (b) the $\mathrm{N}^{1}-\mathrm{H}^{1}$ bond cleavage and subsequent $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond activation followed by the $\mathrm{N}^{1}-\mathrm{H}^{2}$ bond formation. Both pathways may proceed with or without assistance of HCOO^{-}. Our preliminary studies on Model 2 show that the $\mathrm{C}-\mathrm{H}$ activation on the Pdcenter (without involvement of HCOO^{-}) is kinetically infeasible; therefore, it will not be discussed below. This finding is consistent with the conclusions of numerous previous studies of $\mathrm{C}-\mathrm{H}$ bond activation of other $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{13,14}$

Direct C-H Bond Activation Pathway. For the reaction to proceed via this pathway, at first, the $\mathbf{I} _\mathbf{a} \rightarrow \mathbf{I} \mathbf{c}$ (or $\mathbf{I} \mathbf{d}$) or $\mathbf{I} \mathbf{a} \rightarrow \mathbf{I} _\mathbf{e}\left(\begin{array}{l}\text { or } \mathbf{I} \mathbf{f}) \text { isomerization should take place (Figure 1). }\end{array}\right.$ As seen in Table 1, the $\mathbf{I}_{\mathbf{\prime}} \mathbf{a} \rightarrow \mathbf{I}_{\mathbf{c}} \mathbf{c}$ (or $\mathbf{I}_{\mathbf{d}} \mathbf{d}$) or $\mathbf{I}_{\mathbf{-}} \mathbf{a} \rightarrow \mathbf{I} \mathbf{e}$ (or I_f) isomerization requires $12.2 \overline{7} / 11.00 \overline{(}$ or $11.1 \overline{6} / 11.0 \overline{5})$ and $11.97 / 11.22$ (or $11.68 / 11.17$) $\mathrm{kcal} / \mathrm{mol}$ energy, respectively. As mentioned above, we did not study barriers associated with these isomerization processes, but in any case, they are not
expected to contribute to the final mechanism and stereoselectivity of reactions 1 and 1^{\prime} and 2 and 2^{\prime}.

At the next stage, the coordinated HCOO ligand attacks the H^{2}-atom and activates the $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond at the transition state TS1. This transition state is an important one and controls the formation of (R) and (S) stereoisomers. In Figure 3, we present

Figure 3. Calculated $\mathrm{C}-\mathrm{H}$ bond activation transition state (TS1) of the "direct $\mathrm{C}-\mathrm{H}$ bond activation" pathway. In the notation TS1_z_(X), TS1 stands for transition state, \mathbf{z} stands for the connected prereaction complex, and \boldsymbol{X} stands for stereoisomer (R or S). Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for TS1_c_(R) and TS1_f_(S), but full geometries of all reported TS1's are given in the Supporting Information.
four calculated isomers of this transition state: TS1_c_(R), TS1_d_(S), TS1_e_(R), and TS1_f_(S) (here c-f stand for the prereaction complexes connected directly by this transition state, and (R) and (S) stand for the stereoisomers of the resulting intermediate, Int1).

The performed IRC calculations show that (a) TS1_c_(R) connects structure I_c with intermediate Int1_c_(R), (b) TS1_d_(S) connects structure I_d with intermediate Int1_d_($\bar{S})$, (c) TS1_e_(R) connects structure I_e with intermediate Int1_e_($\bar{R})$, and (d) TS1_f_(S) connects structure I_f with intermediate Int1_f_(S). The presented important $\overline{\text { geometry }}$ parameters of these transition states are consistent with their nature. As seen in Figure 3, in general, at these transition states the broken $\mathrm{C}^{3}-\mathrm{H}^{2}$ bonds are elongated to ca. $1.31-1.32 \AA$, and the formed $\mathrm{O}^{2}-\mathrm{H}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ bonds are shrunk to $c a .1 .35-1.37 \AA$ and $c a .2 .15-2.16 \AA$, respectively. Other geometry parameters of these transition states are similar to those in the corresponding prereaction complexes. The calculated normal modes with imaginary frequencies of 1023.1i, $1070.3 i, 1004.4 i$, and $996.6 i \mathrm{~cm}^{-1}$ are fully consistent with the nature of these transition states, too.

The energy barriers for the \mathbf{I} _a \rightarrow Int1 rearrangement, calculated relative to $\mathbf{I}-\mathbf{a}$, are $21.41 / 22.80,20.99 / 22.78 / / 22.85$, $18.59 / 19.74 / / 20.19$, and $19.24 / 20.34 \mathrm{kcal} / \mathrm{mol}$, at the TS1_c_(R), TS1_e_(R), TS1_d_(S), and TS1_f_(S), respectively (see also the right-hand side of Figure 4). Thus, the lowest energy barriers on the potential energy surface of the "direct $\mathrm{C}-\mathrm{H}$ bond activation" pathway are 20.99/22.78//22.85 and $18.59 / 19.74 / / 20.19 \mathrm{kcal} / \mathrm{mol}$ at the TS1_e_($\boldsymbol{R})$ and TS1_d_(S), respectively. Overcoming these energy barriers

Figure 4. Schematic presentation of important mechanistic steps of the "direct $\mathrm{C}-\mathrm{H}$ bond activation" (right) and "N-H bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" (left) pathways of the studied reaction. Energetics are presented as $\otimes \mathrm{H}_{\mathrm{gas}} / \otimes \mathrm{G}_{\mathrm{gas}} / /\left[\otimes \mathrm{G}_{\text {solv }}\right]$ in $\mathrm{kcal} / \mathrm{mol}$. This scheme is scaled to the $\otimes \mathrm{H}_{\text {gas }}$ value. (a) This is the upper-limit of the energy barrier required for the HCOOO-to-HCOO^{-}substitution.
leads to formation of the intermediates Int1_e_(R) and Int1_d_(S), respectively. In other words, as seen in Figure 4, if the reaction would follow a "direct $\mathrm{C}-\mathrm{H}$ bond activation" pathway, the formation of (R) product would be kinetically $2.40 / 3.04 / / 2.66 \mathrm{kcal} / \mathrm{mol}$ less favorable than the formation of (S) product.
The resulting intermediates Int1_c_(R), Int1_d_(S), Int1_e_(\boldsymbol{R}), and Int1_f(S) (see Figure 5) are $8 . \overline{45} / 7.78$,

Figure 5. Calculated isomers and important geometry parameters of the intermediate Int1 of the "direct $\mathrm{C}-\mathrm{H}$ bond activation" reaction. In the notation Int1_z_(X), Int1 stands for the intermediate of the "direct CH bond activation" reaction, z stands for the connected prereaction complex, and \boldsymbol{X} stands for stereoisomer (R or S). Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for Int1_c_(R) and Int1_f_(S), but full geometries of all reported Intl's are give in the Supporting Information.
$10.31 / 8.98,3.06 / 3.58$, and $4.56 / 2.69 \mathrm{kcal} /$ mol lower in energy than the energetically most favorable reactant $I _a$. As seen from Figure 5, in intermediates Int1_c_(\boldsymbol{R}), Int1_d_(S), and Int1_f_(S), the H^{2} atom is transferred from $\mathrm{HCOO}^{2}-\mathrm{H}^{2}$ to the $\overline{\mathrm{O}^{4}}\left(\right.$ or $\left.\mathrm{O}^{3}\right)$ center of the amino acid: the calculated $\mathrm{O}^{2}-\mathrm{H}^{2}$ bond distance in Int1_c_($\boldsymbol{R})$, Int1_d_($\boldsymbol{S})$, and Int1_f_($\boldsymbol{S})$ is
1.408, 1.441 , and $1.361 \AA$, respectively. In intermediates Int1_e_(R), the HCOOH fragment is H -bonded to μ-oxo ligand O^{3}. In any case, we have found that the H -shuttling between the HCOO and the amino acid is energetically a less demanding process (not shown here).

Comparison of the $\mathrm{Pd}-\mathrm{O}^{3}$ bond in prereaction complexes (in Figure 1) I_c-f and the corresponding intermediates Int1_c-f (in Figure 5) shows that in the latter the amino acid ligand is effectively detached from the Pd-center: the $\mathrm{Pd}-\mathrm{O}^{3}$ bond distances are by $0.25-0.30 \AA$ longer in intermediates than in corresponding prereaction complexes. Meantime, the $\mathrm{Pd}-\mathrm{O}^{1}$ bond distance is only $0.06-0.07 \AA$ longer in Int1_c-f than in I_c-f. These geometry changes indicate that the dissociation of amino acid ligand ($\mathbf{L}-\mathbf{H}$, below) from the intermediates Int1_c-f is relatively easier than the HCOOH dissociation. The reactions

$$
\begin{aligned}
& \text { Int1_c_(R) } \rightarrow \text { P2_(R) + L-H } \\
& \text { Int1_e_(R) } \rightarrow \text { P2_(R) + L-H } \\
& \text { Int1_d_(S) } \rightarrow \text { P2_(S) + L-H } \\
& \text { Int1_f_(S) } \rightarrow \text { P2_(S) + L-H }
\end{aligned}
$$

are calculated to be $21.34 / 7.89,15.95 / 3.69,20.77 / 8.38$, and $15.02 / 2.09 \mathrm{kcal} / \mathrm{mol}$ endothermic, respectively. Meantime, the reactions

$$
\begin{aligned}
& \text { Int1_c_(R) } \rightarrow \mathbf{P} 1_{-}(\boldsymbol{R}) \text { _cis + HOOCH } \\
& \text { Int1_e_(R) } \rightarrow \text { P1_(R)_cis + HOOCH } \\
& \text { Int1_d_(S) } \boldsymbol{\rightarrow} \text { P1_(S)_cis + HOOCH } \\
& \text { Int1_f_(S) } \boldsymbol{\rightarrow} \mathbf{P} 1_{-}(\boldsymbol{S}) \text { _cis }+ \text { HOOCH }
\end{aligned}
$$

are found to be endothermic by $24.85 / 13.66,19.46 / 9.46$, $25.00 / 13.50$, and $19.25 / 7.21 \mathrm{kcal} / \mathrm{mol}$, respectively. In other words, the formation of $\mathbf{P} \mathbf{2}$ product from Int1_c-f is more favorable than the formation of the experimentally observed product P1.

In summary, if the $\mathrm{C}-\mathrm{H}$ bond activation in complex I_a would proceed via the direct $\mathrm{C}-\mathrm{H}$ activation pathway, then (1) the $\mathrm{C}-\mathrm{H}$ bond activation would occur with 20.99/22.78// 22.85 and $18.59 / 19.74 / / 20.19 \mathrm{kcal} / \mathrm{mol}$ energy barriers, leading to (R) and (S) and intermediates Int1_e_(R) and Int1_d_(S), respectively. In other words, the formation of the (R) stereoisomer would be kinetically slightly less favorable than that of the (S) stereoisomer, and (2) the final product of the reaction would be complex P2 $[\mathrm{Pd}(\mathrm{II})$ complex with HCOO (i.e., AcO and substrate)] rather than the experimentally reported complex P1 $[\mathrm{Pd}(\mathrm{II})$ complex with amino acid and substrate]. However, both of these computational findings contradict the available experimental data. ${ }^{5,6}$
$\mathrm{N}-\mathrm{H}$ Bond Cleavage and Subsequent $\mathrm{C}-\mathrm{H}$ Bond Activation Pathway. For the sake of simplicity, we divide discussion of this pathway into two parts. Part-1 (see Scheme 2, where we present the process initiated exclusively from the cis "a" isomer) involves I a reactant, the $\mathrm{N}^{1}-\mathrm{H}^{1}$ bond cleavage transition state ($\mathbf{T S}\left(\mathbf{N}-\mathbf{H}^{-l e a v}\right), \mathrm{HCOOH}$-to- HCOO^{-}substitution (Int2-to-Int3), and final product, intermediate Int3. Part-2 starts from the intermediate Int 3 and follows the $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond cleavage and $\mathrm{N}^{1}-\mathrm{H}^{2}$ bond formation steps (see below).

Our exhaustive calculations (at the Model-2 level) indicate that the $\mathrm{N}^{1}-\mathrm{H}^{1}$ bond cleavage in $\mathbf{I} \mathbf{a}$ (and $\mathbf{I} _\mathbf{b}$) occurs with a $\sim 5 \mathrm{kcal} / \mathrm{mol}$ energy barrier and leads to intermediate Int2_a (Int2_b): the reactions I_a \rightarrow Int2_a and I_b \rightarrow Int2_b are

Scheme 2

Int3_a

Int2_a
found to be endothermic by $4.13 / 3.74$ and $5.49 / 5.41 \mathrm{kcal} / \mathrm{mol}$, respectively. At the next stage, the HCOOH -to- HCOO^{-} substitution occurs, which leads to intermediate Int3_a (or Int2_b). Overall, Part-1, i.e. reactions I_a \rightarrow Int3_a and/ or $\mathbf{I} \mathbf{b} \mathbf{b} \rightarrow$ Int3_b, is found to be exothermic by $4.50 / 5.68$ and/or $5.5 \overline{1} / 6.87 \mathrm{kcal} / \mathrm{mol}$, respectively. For the real system, i.e. for Model-1, the reaction I_a \rightarrow Int3_a_trans is found to be even more exothermic, $12.05 / 12.92 \mathrm{kcal} / \mathrm{mol}$, in the gas-phase (see below). Inclusion of solvent effects makes it slightly ($3.39 \mathrm{kcal} / \mathrm{mol}$) endothermic (see the left-hand side drawing in Figure 4).

Although the overall reaction I_a \rightarrow Int3_a_trans is exothermic (or only slightly endothermic in solution), it proceeds with a significant energy barrier. The first step of this reaction, i.e. the $\mathrm{N}^{1}-\mathrm{H}^{1}$ bond cleavage, requires only a moderate (a few kcal/mol) energy barrier, based on our Model-2 studies. At the Model-1 level of the studies, we were not able to locate any transition state associated with this step. Therefore, we may expect the HCOOH -to- HCOO^{-}substitution to occur directly from the reactant $\mathbf{I} \mathbf{a}$ ((or I_b) or from the less stable intermediate Int2_a (or Int2_b). Here, we report the related energetics only from the reactant I_a (the process starting from the reactant $\mathbf{I} _\mathbf{b}$ is expected to require a much larger energy barrier and, therefore, will not be discussed). The stepwise process started by dissociation of HCOOH from I_a (i.e., via $I_{-} \mathbf{a} \rightarrow$ Int $2 \rightarrow$ Int $\left.\mathbf{2}^{\prime}+\mathbf{H C O O H}\right)$ requires $15.52 / 11 . \overline{6} / / 9.10 \mathrm{kcal} / \mathrm{mol}$. This value could serve as the upper limit to the energy barrier of the concerted HCOOH -to- HCOO^{-}substitution, which was not studied in this work.

Thus, as seen in Figure 4, even the upper limit of the energy barrier, $15.52 / 11.67 / / 9.10 \mathrm{kcal} / \mathrm{mol}$, required for the HCOOH -to- HCOO^{-}substitution from the reactant $\mathbf{I}_{\mathbf{-}} \mathbf{a}$, is significantly smaller than the $20.99 / 22.78 / / 22.85$ and $18.59 /$ $19.74 / / 20.19 \mathrm{kcal} / \mathrm{mol}$ energy barrier found for the "direct C-H bond activation" pathway, which also starts from the same reactant. On the basis of these data, we conclude that the first possible bond breaking event of the reactant $I _a$ would be the $N-H$ bond cleavage coupled with the HCOOH -to- HCOO^{-}substitution leading to Int3, rather than "direct $C-H$ bond activation" discussed in the previous section. The $\mathrm{N}-\mathrm{H}$ bond cleavage converts the nitrogen atom to a X-type ligand and promoted the departure of the HCOO ligand. This series of events creates a vacant site for arene to coordinate, which is essential for the $\mathrm{C}-\mathrm{H}$ cleavage step through a deprotonation pathway (Figure 7). Although a similar deprotonation mechanism was computed with the $\mathrm{Pd}(0) / \mathrm{ArI} / \mathrm{PPh}_{3}$ catalytic system, ${ }^{14} \mathrm{C}-\mathrm{H}$ cleavage by the $\operatorname{Pd}(\mathrm{II})$ catalyst presented here represents a different catalytic reaction. This mechanistic understanding offers valuable insight for
further optimization of this new amino acid with respect to the protecting group on the nitrogen.

The intermediate Int3 is the prereaction complex for the $\mathrm{C}-\mathrm{H}$ activation and has a myriad of isomers. Four of them (Int3_a_trans, Int3_a_cis, Int3_b_trans, Int3_b_cis) that are connected to the corresponding $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond activation product Int4 via the transition states TS2 are given in Figure 6. One should note that the Int3_a and Int3_b isomers are direct products of the reactants $\mathbf{I}_{-} \mathbf{a}$ and $\mathbf{I}_{-} \mathbf{b}$, respectively.

As seen from Figure 6, in all isomers of Int3, the HCOO fragment is H -bonded to phenyl rings and/or the H^{3}-atom of

Figure 6. Calculated isomers and important geometry parameters of the intermediate Int3 that is a result of the $\mathrm{N}-\mathrm{H}$ bond cleavage followed by the HCOOH -to- HCOO^{-}substitution. In the notation Int1_z_x, Int3 stands for intermediate, \mathbf{z} stands for the connected prereaction complex, and \mathbf{x} stands for the positioning of the $i-\operatorname{Pr}$ and C^{1} chiral center ($\mathbf{x}=\mathbf{c i s}$, if the $i-\operatorname{Pr}$ ligand and the C^{1} center are located on the same side of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane; $\mathbf{x}=$ trans, if the i-Pr ligand and the C^{1} center are located on the opposite sides of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane). Distances are given in angstroms. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for Int3_a_trans and Int3_b_cis, but full geometries of all reported Int3's are give in the Supporting Information.
the C^{1}-center. These isomers easily rearrange into each other, among which the isomer Int3_a_trans, where the $i-\operatorname{Pr}$ ligand and C^{1}-center are trans to each other, is calculated to be $5-7 \mathrm{kcal} / \mathrm{mol}$ more stable than other isomers (except isomer Int3_b_cis, which is $19.34 / 20.39 \mathrm{kcal} / \mathrm{mol}$ higher than Int3_a_trans, presumably due to strong steric repulsion between $\overline{i-P r}$ and Ph ligands). Therefore, for the sake of simplicity, below we consider the energetically most favorable Int3_a_trans isomer as a prereaction complex for $A L L$ subsequent $\mathrm{C}-\mathrm{H}$ bond activation processes and report the energy barriers at the transition state TS2 relative to this complex.

TS2 for the arene $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond activation is the most intriguing structure on the potential energy surface of the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway: in fact, it controls the stereoselectivity of the reaction, i.e. the formation of (R) or (S) stereoisomers. The lowest energy barriers at the transition states TS2_a_(R)_trans and TS2_b_(S)_trans (see Figure 7; these transition states lead to the $\overline{(R)} \bar{R}$ and (S) stereoisomers and are connected to the Int3_a_trans and Int3_b_trans prereaction complexes, respectively) are 11.62/
$13.66 / / 11.05$ and $12.53 / 14.60 / / 11.99 \mathrm{kcal} / \mathrm{mol}$, respectively. As seen in Figure 7, at the transition state TS2_a_(\boldsymbol{R})_trans,

Figure 7. Calculated $\mathrm{C}-\mathrm{H}$ bond activation transition states (TS2) of the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway. In the notation TS2_z_(X)_y, TS2 stands for the intermediate, \mathbf{z} stands for the connected prereaction complex, \boldsymbol{X} stands for stereoisomer (R or S), and \mathbf{y} stands for the positioning of the $i-\operatorname{Pr}$ and the C^{1} chiral center $(\mathbf{y}=\mathbf{c i s}$, if the $i-\operatorname{Pr}$ ligand and the C^{1} center are located on the same side of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane; $\mathrm{y}=$ trans, if the $i-\operatorname{Pr}$ ligand and the C^{1} center are located on the opposite sides of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane). Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms.
the broken $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond distance is elongated to $1.254 \AA$, and the formed $\mathrm{Pd}-\mathrm{C}^{3}$ and $\mathrm{O}^{2}-\mathrm{H}^{2}$ bond distances are 2.210 and $1.425 \AA$, respectively. Similarly, at the TS2_b_(S)_trans the calculated $\mathrm{C}^{3}-\mathrm{H}^{2}, \mathrm{Pd}-\mathrm{C}^{3}$, and $\mathrm{O}^{2}-\mathrm{H}^{2}$ bond distances are 1.298, 2.196, and $1.354 \AA$, respectively. One should note that two other studied transition states, TS2_a_(R)_cis and TS2_b_(S)_cis, where the $i-\operatorname{Pr}$ ligand and C^{1}-center are located cis to each other, lead to Int4_(R)_cis and Int4_(S)_cis isomers, respectively. However, these transition states are energetically $0.35 / 1.39$ and $6.44 / 7.42 \mathrm{kcal} / \mathrm{mol}$ higher than the most favorable transition states TS2_a_(R)_trans and TS2_b_(S)_trans, respectively.

The calculated large energy difference in TS2_b_(S)_trans and TS2_b_(S)_cis can be explained by the existence of strong steric repulsion between the HCOO-fragment, on one side, and the i-Pr and phenyl (located on C^{1}-center) ligands, on the other side. As a result, TS2_b_(S)_cis becomes more reactant-type than TS2_b_(S)_trans (see Figure 7).

In summary, the above presented results show that the energy barrier for the formation of the (R) stereoisomer is (by 0.91/0.94 $\mathrm{kcal} / \mathrm{mol}$) smaller than that for the formation of the (S) stereoisomer, which would be expected to give approximately 60% ee at room temperature. Our experimental data with both pyridine and carboxylic substrates showed that the (R) stereoisomer was the predominant product. ${ }^{5,6}$ The enantioselectivity obtained with the pyridine substrate and the same ligand (Boc-Valine) was 70% ee. ${ }^{5}$ On the basis of these data, the origin of the enantioselectivity can be largely attributed to steric repulsions in the transition states TS2.

Transition states TS2_a_(R)_trans, TS2_b_(S)_trans, TS2_a_(R)_cis, and TS2_b_(S)_cis are confirmed to be real transition states with one imaginary frequency of $509.3 i, 777.8$, $867.0 i$, and $432.3 i \mathrm{~cm}^{-1}$, respectively. Normal mode analyses show that these imaginary frequencies correspond to the $\mathrm{C}^{3}-$ H^{2} bond cleavage and $\mathrm{Pd}-\mathrm{C}^{3}$ and $\mathrm{O}^{2}-\mathrm{H}^{2}$ bond formation. The performed IRC calculations confirm that TS2_a (R)_trans, TS2_b_(S)_trans, TS2_a_(R)_cis, and TS2_b_($\bar{S})_{-} \mathbf{c i s}$ connect prereaction complexes Int3_a_trans, Int3_b_trans, Int3_a_cis, and Int3_b_cis with intermediates Int4_((R) _trans, Int4_($\bar{S})_{_}$trans, Int4_($\left.\bar{R}\right)$ _cis, and Int4_(S)_cis (see Figure 8).

Figure 8. Calculated isomers and their important geometry parameters for the intermediate Int4 that resulted after the $\mathrm{C}-\mathrm{H}$ bond activation on the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway. In the notation Int4_(X)_z, Int4 stands for intermediate, \boldsymbol{X} stands for stereoisomer $(R$ or $S)$, and \mathbf{z} stands for the positioning of the $i-P r$ and the C^{1} chiral center $\left(z=\right.$ cis, if the $i-P r$ ligand and the C^{1} center are located on the same side of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane; $\mathbf{z}=$ trans, if the $i-\operatorname{Pr}$ ligand and the C^{1} center are located on the opposite sides of the $\mathrm{N}^{1} \mathrm{O}^{3} \mathrm{~N}^{2} \mathrm{C}^{3}$ plane). Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for Int4_(R)_trans and Int4_(S)_cis, but full geometries of all reported Int's are give in the Supporting Information.

As seen in Figure 8, at intermediates Int4 the formation of (R) and (S) stereoisomers, that was initiated at the TS2 structure, is completed. Intermediates Int4_(R)_trans and Int4_(R)_cis are (R) stereoisomers, which $\overline{\text { differ from each }}$ other only by the position of the $i-\operatorname{Pr}$ ligand and the C^{1} chiral center: in Int4_(R)_trans they are trans, while in Int4_(R)_cis they are cis to each other. The isomer Int4_(R)_trans is 2.78/ $5.32 \mathrm{kcal} / \mathrm{mol}$ lower in energy than Int4_(R)_cis. The (S) stereoisomers, Int4_(S)_trans and Int4_(S)_cis, are 4.15/3.61 and $1.39 / 3.85 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the most favorable (R) stereoisomer Int4_(R)_trans.

Thus, the overall reactions ${ }^{-}$Int3_a_trans \rightarrow TS2_a (R) _trans \rightarrow Int4_(R)_trans and Int3_a_trans \rightarrow TS2_b_ (S) _trans \rightarrow Int4_($S)_{-}$-trans are calculated to proceed with $11 . \overline{6} / 13.66 / / 11.05$ and $\overline{12} .53 / 14.60 / / 11.99 \mathrm{kcal} / \mathrm{mol}$ barriers and
be exothermic by $7.83 / 7.52$ and $3.68 / 3.91 \mathrm{kcal} / \mathrm{mol}$, respectively. In other words, the formation of (R) stereoisomer is more favorable than the (S) stereoisomer both kinetically and thermodynamically, which is consistent with our experimental findings. ${ }^{5,6}$

At the next step, the formed HCOOH ligand in Int4 migrates to the vicinity of the N^{1}-center. This occurs via either concerted or dissociation-association pathways. In any case, it is a less energy demanding process, and, therefore, will not be discussed in detail while we show its two (out of many possible), Int4_(R)_cis_e and Int4_(S)_cis_f, isomers in Figure 9.

Figure 9. Additional isomers of intermediate Int4, where HCOOH ligand is H -bonded to the N^{2}-center. In the notation Int4_(X)_z_y, Int4, X, and z are the same as in Figure 7, while y stands for the connected prereaction complex. Ligands or numbers given without parentheses are for (R) isomers, while those given in parentheses are for (S) isomers. Distances are given in angstroms. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for Int4_(S)_cis_f, but full geometries of all reported Int4's are give in the Supporting Information.

As seen in Table 2, the Int4_($\boldsymbol{R})$ _cis_e and Int4_(S)_cis_f isomers are only $3.88 / 5.89$ and $1.65 / 3.00 \mathrm{kcal} / \mathrm{mol}$ higher than

Table 2. Relative Energies (in kcal/mol) of All Reported Structures on the " $\mathrm{N}-\mathrm{H}$ Bond Cleavage and Subsequent C-H Bond Activation Pathway" of the Studied Reaction Calculated at the B3LYP/ $\{$ Lanl2dz $+6-31 G(d, p)\}$ Level of Theory in Gas-Phase and THF Solvent (at the PCM Level)

structure	ΔH_{gas}	ΔG_{gas}	ΔG_{s}
I_a	$[0.00]$	$[0.00]$	$[0.00]$
Int3_a_trans + HCOOH	$[-12.05]$	$[-12.92]$	$[3.39]$
Int3_a_trans	0.00	0.00	0.00
Int3_b_trans	6.03	5.45	1.79
Int3_a_cis	4.58	6.81	
Int3_b_cis	19.34	20.39	
TS2_a_(R)_trans	11.62	13.66	11.05
TS2_b_(S)_trans	12.53	14.60	11.99
TS2_a_(R)_cis	11.97	15.05	
TS2_b_(S)_cis	18.97	22.02	
Int4_(R)_trans	-7.83	-7.52	
Int4_(R)_cis	-5.05	-2.20	
Int4_(S)_trans	-3.68	-3.91	
Int4_(S)_cis	-5.64	-2.99	
Int4_(R)_cis_e	-3.95	-1.63	
Int4_(S)_cis_f	-6.18	-4.52	
Int5_(R)_trans	-2.94	-1.53	
Int5_(R)_cis	-6.60	-3.43	
Int5_(S)_trans	3.15	3.65	
Int5_(S)_cis	-6.45	-3.67	
Int5_(R)_cis_e	-2.59	-0.28	
Int5_(S)_cis_f	-5.21	-2.58	

the energetically more favorable intermediate Int4_(R)_trans. In intermediates Int4_(R)_cis_e and Int4_($S)_{-}^{-}$cis_f, the proton $\left(\mathrm{H}^{2}\right)$ transfer from $\mathrm{HCOOH}{ }^{2}$ to N^{1}-atom completes the reaction and leads to formation of the HCOO^{-}-bound intermediates Int5 (see Figure 10). In intermediate Int5, the

Figure 10. Calculated isomers of the intermediate Int5 that resulted after proton transfer from HCOOH ligand to the N^{2} center. For the notation Int5_(X)_z_y, see the caption for Figure 8. For the sake of simplicity, here, as an example, we explicitly present the calculated structures only for Int5_(R)_cis, Int5_(S)_trans, and Int5_(S)_cis_f, but full geometries of all reported Int5's are give in the Supporting Information.
$\mathrm{Pd}-\mathrm{N}^{1}$ bond is elongated by $0.05-0.10 \AA$ compared to the case of Int4, while the $\mathrm{Pd}-\mathrm{N}^{2}, \mathrm{Pd}-\mathrm{C}^{3}$, and $\mathrm{Pd}-\mathrm{O}^{3}$ bond distances are only insignificantly changed. The calculations show that Int4_(R)_cis_e \rightarrow Int5_(R)_cis_e and Int4_(S)_cis_f \rightarrow Int5_(S)_cis_f occur with less than $1.5 \mathrm{kcal} / \mathrm{mol}$ energy barrier and are only $\overline{1} .36 / 1.35$ and $0.97 / 1.94$ endothermic, respectively. Since the existence of these transition states is not expected to contribute to the final mechanism of the overall reaction, here we did not locate the exact structures of these transition states.

As seen in Figure 10, the energetically lowest (R) isomer of Int5 is Int5_(R)_cis, which is $1.55 / 1.23 \mathrm{kcal} / \mathrm{mol}$ lower than prereaction complex Int4_(R)_cis.

Dissociation of HCOO^{-}from intermediates Int5 leads to the final product P1 that is reported experimentally ${ }^{5,6}$ (Figure 2).

4. CONCLUSION

The above presented computational data and discussion show the following:
(1) The "direct arene $\mathrm{C}-\mathrm{H}$ bond activation" in \{[chiral mono- N -protected amino acid]-Pd(II)[2-benzhydryl-
pyridine] $\}$ complex I_a, in the presence of acetate (i.e., $\mathrm{AcO})$, is not the operational mechanism of the $(\mathrm{OAc})_{2} \mathrm{Pd}-$ (II)-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ bond activation reaction since it (a) proceeds with a relatively large energy barrier and (b) leads to the product distribution which is not consistent with the experimental findings. ${ }^{5,6}$
(2) A valid mechanism of the $\operatorname{Pd}($ II $)$-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ bond activation in I_{-}a is the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway. This pathway of the reaction starts from the same reactant species and proceeds via the less energetically demanding base (OAc) assisted $\mathrm{N}-\mathrm{H}$ bond cleavage step that leads to the formation intermediate with the $\mathrm{Pd}-\mathrm{N}$ bond. Baseassisted $\mathrm{C}-\mathrm{H}$ bond activation in this intermediate occurs with a smaller energy barrier. The calculated product distribution of the reaction via the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway [the computations show that the formation of the (R) stereoisomer is both kinetically and thermodynamically more favorable over the formation of the (S) stereoisomer] is in full agreement with the experimental findings. ${ }^{5,6}$ On the basis of these data, the origin of enantioseletivity can be largely attributed to steric repulsions in the transition states of the newly identified reaction pathway.
(3) Preference of the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathway of the reaction over its "direct $\mathrm{C}-\mathrm{H}$ bond activation" pathway can be explained in terms of a greater acidity of the $\mathrm{N}-\mathrm{H}$ bond over the $\mathrm{C}-\mathrm{H}$ bond.
However, one should mention that the above-presented mechanistic picture is, most likely, rather simplistic. In reality, the mechanism of this reaction could be more complex and may involve several OAc fragments, which would work in a concerted (via simultaneous $\mathrm{Pd}-\mathrm{O}^{1}$ and arene $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond cleavage coupled with a $\mathrm{Pd}-\mathrm{C}^{3}$ and $\mathrm{O}^{6}-$ H^{2} bond formation) or a stepwise (involving the $\mathrm{N}-\mathrm{H}^{1}$ bond cleavage, $\mathrm{C}^{3}-\mathrm{H}^{2}$ bond cleavage, and $\mathrm{N}-\mathrm{H}^{1}$ bond formation steps) manner to facilitate the reaction (see Scheme 3).

Scheme 3

Detailed computational and experimental studies of the pathways presented in Scheme 3 are under investigation and will be reported shortly.

ASSOCIATED CONTENT

(5) Supporting Information

Complete ref 9. Stereochemical information obtained through experiments, including the following: (a) X-ray crystal data of the enantiomerically enriched (R) isomer of 2-((2-butyl-6-methylphenyl)(o-tolyl)methyl)pyridine, 2b; (b) synthesis of the acetato-bridged dinuclear cyclopalladated complex $\mathbf{1 b}$; (c) X-ray crystal structure data for $\mathbf{1 b}$; (d) synthesis of the chloro-bridged dinuclear cyclopalladated complex 1c; (e) X-ray crystal structure data for $\mathbf{1 c}$; (f) synthesis of the intermediates $\mathbf{1 d}$ and $\mathbf{1 e}$; and (g) diastereoselective synthesis of intermediate 1d. Computational data, including the following: (a) energies of all reported structures on the "direct $\mathrm{C}-\mathrm{H}$ bond activation" pathway of the studied reaction calculated at the B3LYP/ $\{\operatorname{Lanl2dz+6-31G(d,p)\} }$ level of theory in the gas-phase (Table S4); (b) energies of all reported structures on the " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation pathway" of the studied reaction calculated at the B3LYP/\{Lanl2dz+6-31G(d, p) \} level of theory in the gas-phase (Table S5); (c) PCM/ B3LYP/\{Lanl2dz+6-31G(d,p)\} calculated energies (at their gas-phase optimized geometries) of the selected structures on the "direct $\mathrm{C}-\mathrm{H}$ bond activation" and " $\mathrm{N}-\mathrm{H}$ bond cleavage and subsequent $\mathrm{C}-\mathrm{H}$ bond activation" pathways of the studied reaction [All calculations were performed in THF solvent (Table S6).]; (d) Cartesian coordinates (in \AA) of all structures reported in the paper and calculated at the B3LYP $/\{\operatorname{Lan} 12 \mathrm{dz}+6$ $31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ \} level of theory (Table S7). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

dmusaev@emory.edu; yu200@scripps.edu

ACKNOWLEDGMENTS

The authors gratefully acknowledge the NSF Center of Chemical Innovation in Stereoselective $\mathrm{C}-\mathrm{H}$ Functionalization (CHE0943980) for support. D.G.M. acknowledges a NSF MRI-R2 grant (CHE-0958205) and the Cherry Emerson Center for Scientific Computation.

REFERENCES

(1) (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(2) Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem., Int. Ed. 1995, 34, 1059.
(3) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 15116.
(4) For early investigations into stereochemistry in catalytic $\mathrm{C}-\mathrm{H}$ activation reactions using a chiral auxiliary, see: (a) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112. (b) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7420.
(5) For the first exampleof $\mathrm{Pd}(\mathrm{II})$-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ activation/ $\mathrm{C}-\mathrm{C}$ bond formation controlled by mono- N -protected amino acid ligands, see: Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
(6) For $\mathrm{Pd}(\mathrm{II})$-catalyzed enantioselective $\mathrm{C}-\mathrm{H}$ activation/olefination controlled by mono- N -protected amino acid ligands, see: Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(7) For ligand-controlled regioselective $\mathrm{C}-\mathrm{H}$ activation, see: Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
(8) For ligand accelerated $\mathrm{C}-\mathrm{H}$ activation, see: (a) Engle, K. M.; Thuy-Boun, P. S.; Dang, M.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 18183. (b) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu, J.-Q. Chem. Sci. 2011, 2, 967. (c) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 14137. (d) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169. (e) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.
(9) Frisch, M. J. et al. Gaussian 09, Revision A1; Gaussian, Inc.: Wallingford, CT, 2009.
(10) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3107. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1380.
(11) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310. (c) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298.
(12) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032-3041.
(13) For studies concerning the mechanistic aspects $\mathrm{C}-\mathrm{H}$ cleavage by Pd(II), see: (a) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans. 1985, 2629. (b) Canty, A. J.; van Koten, G. Acc. Chem. Res. 1995, 28, 406. (c) Gómez, M.; Granell, J.; Martinez, M. Organometallics 1997, 16, 2539. (d) Gómez, M.; Granell, J.; Martinez, M. J. Chem. Soc., Dalton Trans. 1998, 37. (e) Biswas, B.; Sugimoto, M.; Sakaki, S. Organometallics 2000, 19, 3895. (f) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754. (g) Tunge, J. A.; Foresee, L. N. Organometallics 2005, 24, 6440. (14) For conceptually related studies concerning $\mathrm{C}-\mathrm{H}$ activation with $\mathrm{Pd}(0)-\mathrm{PR} 3 / \mathrm{Ar}-\mathrm{X}$ catalytic systems, see: (a) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am. Chem. Soc. 2005, 127, 7171. (b) GarcíaCuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066. (c) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754. (d) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927. (e) GarcíaCuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880. (f) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.

[^0]: Received: September 19, 2011

